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Abstract—This paper presents our design and implementation
of a fast and accurate data aggregation strategy for LoRa
networks named One-shot. To facilitate data aggregation, One-
shot assigns distinctive chirps for different LoRa nodes to encode
individual data. One-shot coordinates the nodes to concurrently
transmit encoded packets. Receiving concurrent transmissions,
One-shot gateway examines the frequencies of superimposed
chirp signals and computes application-defined aggregate func-
tions (e.g., sum, max, count, etc.), which give a quick overview
of sensor data in a large monitoring area. One-shot develops
techniques to handle a series of practical challenges involved
in frequency and time synchronization of concurrent chirps. We
evaluate the effectiveness of One-shot with extensive experiments.
Results show that One-shot substantially outperforms state-
of-the-art data aggregation methods in terms of aggregation
accuracy as well as query efficiency.

I. INTRODUCTION

LoRa is one of the most promising Low-Power Wide Area
Network (LPWAN) technologies for sensor data collection
over large areas [1–9]. Benefiting from long communication
ranges, LoRa is especially suitable for low-power low-rate IoT
applications such as environmental monitoring [10, 11], smart
city [12, 13], smart metering [14–18], etc. LoRaWAN forms
a star topology where LoRa end devices directly communicate
with a gateway in one-hop. This network architecture elimi-
nates the delays of multi-hop transmissions as compared to
traditional hierarchical wireless sensor networks [19].

Our research targets at typical applications of using Lo-
RaWAN for data collection and emergency response, such
as disaster rescue [20] and wildfire alert [21, 22]. In those
applications, quick data collections from a large number of
sensors are usually required. For example, consider scenarios
where toxic gases leak from a chemical plant in a city or
wildfires sweep across a forest. In order to respond in a timely
and effective manner, we need quick overviews of the events
(e.g., source of the leakage, the number of trapped people,
polluted areas, etc.), which involves data acquisition from a
large number of sensor nodes. However, due to low duty-cycles
of LoRaWAN (e.g., 1% in Europe [23]) and long air-time of
a LoRa packet (e.g., hundreds of milliseconds to several sec-
onds), it may take several hours for a gateway to sequentially
query LoRa nodes in a large monitoring area, which cannot
meet the stringent time requirement of emergency response
applications.

To accelerate data collection, one possible way is sparse
sampling that only queries a subset of nodes [19, 24]. How-
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Fig. 1. An illustrative example of One-shot: Each node transmits sensing
information encoded with base chirps (bit ‘0’) and non-base chirps (bit ‘1’)
concurrently with other nodes. The gateway obtains aggregated result by
counting the number of non-base chirps (bit ‘1’) within each chirp duration.

ever, even with sparse sampling [23], it still needs to query
hundreds of nodes for a large monitoring area. Latest parallel
decoding technologies [25–31] support multiple nodes to com-
municate concurrently, which can speed up data collection to
some extent. However, the maximum concurrency supported
by those methods is limited to tens of LoRa nodes. There
remains a large gap between the application requirements
and the data collection efficiency in emergency response
applications.

Recently, QuAiL [21] uses data aggregation method to
collect statistical results of sensory data from hundreds of
LoRa nodes. The rationale is that approximate overviews of
all sensors would be sufficient and preferred for emergency
responses rather than the exact data of individual ones. QuAiL
coordinates multiple LoRa nodes to send packets simultane-
ously and measures signal power at a gateway to roughly
estimate some statistics of sensor data (sum, mean, variance,
etc.) which are encoded by the power levels of superimposed
signals. Since many nodes transmit concurrently, QuAiL can
dramatically reduce data acquisition time. However, as the
power of received signals is susceptible to noise and inter-
ference, the measured power can differ substantially from the
expected value, resulting in incorrect recovery of the encoded
aggregation data.

In this paper, we present a quick and accurate data ag-
gregation method for LoRa, named One-shot. Unlike QuAiL
that uses signal power to encode aggregation data, One-shot
aggregates data in frequency domain. In particular, One-shot
assigns different chirps to different nodes to encode data.



Due to unique features of LoRa chirps, the superimposed
signals of concurrent LoRa chirps, after de-chirp, would locate
in distinctive frequency bins. We can use the number and
locations of occupied frequency bins to represent aggregation
data of multiple nodes. As a de-chirp operation is able to
concentrate signal power of long LoRa chirps into high power
peaks in corresponding frequency bins, which are resilient
to noise and interference, One-shot is promising to bring
accuracy and robustness to LoRa data aggregation.

One-shot develops a novel coding scheme to facilitate data
aggregation for large-scale LoRa networks. For each LoRa
node participating in data aggregation, One-shot employs two
chirps (i.e., a base chirp and a non-base chirp) to encode
sensory data in a binary bit format as illustrated in Fig.
1. All nodes use the same base chirp to encode bit ‘0’,
but use different non-base chirps to encode bit ‘1’. Upon
receiving data query commands, all participating nodes will
respond simultaneously with their individual sensory data.
Data aggregation is performed over the air, where the chirps
of multiple nodes superimpose. A gateway examines the
frequencies of superimposed signals and interprets based on
different aggregation rules (e.g., count, sum, mean, max, and
min) to decode the aggregated data of selected nodes. As
shown in Fig. 1, we can count the number of non-base chirps
from superimposed signals to mimic a binary ‘add’ operation,
which is used by One-shot to calculate aggregation functions
such as count, sum and mean. Besides, as One-shot assigns
different nodes with distinctive non-base chirps that differ in
initial frequencies, we can separate the chirps from different
nodes based on frequencies, and perform data aggregations
such as max and min. Based on these basic functions, One-
shot can compute a variety of data aggregation functions such
as spatial and temporal distributions of sensory data in a large
area via a few number of queries, which allows us to get quick
and accurate information of interested areas for emergency
responses.

Putting the above high-level design into practical system,
however, entails two key challenges. Firstly, it is challenging
to synchronize time and frequency among participating LoRa
nodes in concurrent responses to One-shot queries. Due to
hardware imperfection, LoRa nodes may experience frequency
variations and response delays that can differ largely for
different nodes. Such frequency and time deviations may alter
the frequency of transmitted chirp signals, leading to erroneous
data aggregation results. Second, as data aggregation may
involve many LoRa nodes distributed in a large area, the signal
quality of participating nodes can vary dramatically depending
on communication ranges and channel conditions (i.e., near-
far problem). Due to interference among concurrent chirps,
some weak chirps from far-away nodes over poor links become
less likely to be detected, leading to errors in data aggregation.

One-shot develops a series of techniques to handle the above
practical challenges. We find that, though the carrier frequency
and response time delay vary across LoRa nodes, they can be
relatively stable for a given node. Based on this observation,
we can compensate for frequency deviations and time delays

of different LoRa nodes to align with the frequency and time of
gateway. We add small frequency gaps in between concurrent
chirps to safe-guard chirps against frequency misalignment
caused by noises and interference. To mitigate the impacts of
near-far problem, One-shot properly allocates transmit power
to the nodes participating in data aggregation. Moreover, One-
shot assigns encoding chirps based on signal qualities of LoRa
nodes to avoid adverse impacts of strong chirp on weak chirp
detection. Eventually, it empowers a gateway to detect and
decode concurrent chirps reliably for robust data aggregation.

We implement a prototype system of One-shot with soft-
ware defined radios and evaluate the effectiveness of One-
shot via extensive experiments. Evaluation results demonstrate
that One-shot substantially outperforms the state-of-the-art
methods in both data accuracy and communication efficiency.
In particular, One-shot can produce higher aggregate accuracy
than QuAiL in various SNR conditions.

II. BACKGROUND AND MOTIVATION

A. LoRaWAN Primer

LoRa PHY. LoRa adopts Chirp Spread Spectrum (CSS)
in physical layer. In CSS, a chirp with linearly increasing
(decreasing) frequency is called an up-chirp (a down-chirp).
A chirp whose frequency changes from −BW/2 to BW/2
is defined as a base chirp. LoRa encodes data by shifting the
initial frequency of a base chirp. A LoRa chirp can represent
SF = log2 N bits, where N is the total number of different
initial frequencies.

LoRaWAN architecture. In LoRaWAN, benefiting from
the long communication range, LoRa nodes can directly trans-
mit packets to a gateway without relaying as in traditional
wireless sensor networks. After receiving packets from LoRa
nodes, the gateway forwards them to a network server over
the Internet. The network server then communicates with
application servers to enable a wide range of applications. In
practical deployment, a LoRa gateway can cover a large spatial
area that may consist of thousands of LoRa nodes. However,
due to the low-data rate of LoRa packets and low duty cycle
constraints, it takes a long time (several hours) for a gateway
to collect data from all nodes in the network.

B. Target Application Scenarios

Fast and accurate data aggregation is very useful in response
to disasters or rapidly evolving events. Since LoRa networks
usually cover a wide space and contain a large number of
LoRa nodes, it is particularly important to compute a function
of distributed data acquired from nodes in real-time to make
fast and accurate diagnostics. For example, in severe flooding
events, we need to know some aggregated results of a large
number sensor nodes deployed in the field as soon as possible.
In this case, a quick and accurate estimate of max (e.g., the
maximum rainfall and maximum flood flow), sum (e.g., the
number of trapped people), and mean (e.g., the average rainfall
and average flood flow) can be of vital importance. Application
scenarios include but are not limited to wildfire alerts and



TABLE I
COMPARISON OF SCALABILITY AND NUMBER OF QUERIES FOR DATA

AGGREGATION WITH PARALLEL DECODING TECHNOLOGIES.

Scalability Num. of Queries
Choir ≤ 10 167

FTrack 3∼5 125
NScale 10 50

Pyramid 20 25
PCube 30 20

1 We compare the scalability of each method when
SF is 8 and bandwidth is 250 kHz.

2 In theory, Choir’s maximum scalability is 10. But
in real-world scenarios, it’s scalability is 2∼3.

evacuation [21], toxic gases leakage assessment [10], volcano
monitoring [32], and disaster rescue [20].

In addition, the data aggregation function supported by
One-shot is also applicable to machine learning inference
and spatial information retrieval tasks based on sensor data
since the core computation functions of such tasks are linear
combinations and summation of weighted sensor data [21]. As
such, we see many potential applications that can benefit from
the quick and accurate data aggregation service in the era of
Artificial Intelligence of Things (AIoT) in the near future.

C. Existing Approaches

Parallel decoding mechanisms. Latest advances in LoRa
networks explore unique features of LoRa to resolve packet
collisions and decode concurrent packets from multiple LoRa
nodes. For example, Choir [25], FTrack [26], NScale [29],
Pyramid [30] and PCube [27] classify collided symbols into
the correct packets by using various physical layer features
such as frequency, power, time, and phase. However, the bot-
tleneck of applying parallel decoding to LoRa data aggregation
is the limited scalability. The supported concurrency of those
parallel decoding methods is far from the data aggregation
requirement of a large scale LoRa network containing hun-
dreds or thousands of LoRa nodes. Table I summarizes the
scalability and the number of queries of several representative
parallel decoding methods, which are used to collect data from
500 nodes.

This table shows that even with the help of parallel decod-
ing, a gateway still needs tens or hundreds of queries to obtain
the whole picture of 500 LoRa nodes in LoRaWAN. Besides,
the above parallel decoding methods only work when colliding
packets have sufficient time or frequency misalignment. More-
over, their scalability and accuracy degrade as SNR becomes
worse. Therefore, parallel decoding methods fail to meet the
tight time constraints and robustness for data aggregation in
the above application scenarios.

Data aggregation. State-of-the-art data aggregation work
QuAiL [21] aims to capture an approximate view of a large
monitoring area by aggregating sensor data from LoRa nodes
within a few seconds via a few queries. To this end, QuAiL
encodes sensor data into the power of individual packets
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Fig. 2. The aggregated power of the state-of-the-art method is susceptible to
noise and interference.

sent by LoRa nodes and derives an aggregate result from
the power level of multiple concurrent packets, measured at
a gateway. However, in practice, the received power at the
gateway is not only affected by individual LoRa nodes but
also by the dynamics of the wireless channels (e.g., noise and
interference). Moreover, radio signals of multiple packets can
constructively or destructively interfere. As a consequence, the
overall power levels of superposed signals can differ largely.

In our initial experiments, we observe that the received
power of a single packet varies over time even if we fix
the transmission power. We then conduct experiments with
multiple LoRa transmitters and measure the power level of
aggregate packets from 20 concurrent LoRa nodes. The SNR
of each individual packet differs mainly because of different
communication range from the nodes to the gateway. We use
∆SNR between packets to quantify their power variation
level. As shown in Fig.2, the received power varies substan-
tially as ∆SNR becomes larger than 10 dB, and the variation
increases sharply as the ∆SNR is larger than 20 dB. This
result indicates that it is challenging to acquire an accurate
aggregate result by measuring the power level of colliding
packets due to various influencing factors such as noise and
interference, difference in communication range from nodes to
the gateway, and blockage of line-of-sight paths. Our work is
able to overcome the drawbacks of the state-of-the-art method
and bring accuracy and robustness to LoRa data aggregation.

III. SYSTEM OVERVIEW

One-shot encodes data in binary form using CSS chirps and
performs concurrent transmission to enable quick and accurate
data aggregation for distributed sensors in LoRa networks.
In One-shot, end devices and the gateway work together to
obtain target aggregation results. End devices perform pre-
processing with raw sensor data and transmit concurrently
after receiving a query message from the gateway. On the other
hand, the gateway coordinates concurrent transmissions of end
devices by sending query messages. Once receiving responses
from end devices, the gateway demodulates and decodes the
concurrent transmissions and estimates the aggregation result.
At a high level, the key processes of data aggregation can be
represented as follows

h(d1, ..., dK) = f(

K∑
k=1

gk(dk)) (1)

where h(d1, ..., dK) is our target aggregation function, dk is
the sensor data of node k, gk(·) is the pre-processing function



known to all nodes, and f(·) is the post-processing function
performed at the gateway.

As an illustrative example, let us suppose a gateway wants to
construct a spatial heatmap using LoRa-enabled temperature
sensors deployed in a forest, which can be very useful for
heatwave tracking and wildfire monitoring. Since the tem-
perature data of sensor nodes usually has a high degree of
spatial correlation, the heatmap should be sparse and can be
compressed in some domains (e.g., discrete cosine transform
(DCT) [21]). This gives us an opportunity to recover the
heatmap by querying and aggregating n linear combinations.
Therefore, we can make each node multiply its raw sensor data
with the most critical top-n non-zero weights (gk(·) known to
the nodes) and then transmit the data concurrently with other
sensor nodes. The gateway then computes the weighted sum
and applies invert DCT (f(·)) to recover the heatmap.

As a matter of fact, with proper design of pre-processing
and post-processing functions, a number of useful aggregation
results can be obtained to support various applications beyond
the spatial heatmap construction. For example, with One-shot,
it is easy to count the number of active (or low-battery)
LoRa nodes (i.e., cardinality estimation) in a LoRa network by
requesting each node (or low-battery node) to send one non-
base chirp. The sum and the average of all sensor readings
can also be efficiently aggregated. Moreover, some machine
learning inference tasks over distributed sensor data can also
be supported as in [21].

In the following, we focus on physical layer encoding and
decoding at LoRa nodes and the gateway, respectively.

IV. ONE-SHOT DESIGN

A. Data Encoding and Decoding

One-shot takes advantages of CSS modulation by mapping
data (after pre-processing) to chirps. In One-shot, packets
transmitted by LoRa nodes adopt the same packet structure as
traditional LoRa packets while the payload part are encoded
with binary chirps. We use a base chirp to represent bit ‘0’
and use a non-base chirp to represent bit ‘1’. Note that though
One-shot also encodes data with chirps, the coding principle
of One-shot fundamentally differs from the traditional LoRa.
In traditional LoRa, chirps encode multiple bits (i.e., SF
bits) with different initial frequencies, which allows LoRa
to achieve robust long-range communication yet at the cost
of low data rates. In One-shot, one chirp only encodes one
bit per chirp which would seem very limited at first glance.
By aggregating concurrent nodes, One-shot can potentially
increase the aggregate data rate from SF bits to approximately
2SF bits per chirp duration. Moreover, as each node can send
chirps at its full transmission power, the salient feature of
long communication range as well as high robustness against
noise and interference of traditional LoRa can be effectively
retained.

On the other hand, to decode the aggregated data, a gateway
needs to first detect the concurrent packets and extract chirp
boundaries. Since the aggregated packets follow the traditional
LoRa packet structure, a gateway can exploit standard packet
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Fig. 3. Packet detection with correlation at the gateway. (a) Correlation result
of concurrent packets; (b) Zoom-in result of peaks in the red box in (a).

detection methods [26] to detect the arrival of current packets
and extract the packet chirp boundaries. In specific, a gateway
detects LoRa preambles by correlating the received signal with
locally generated base chirps. Fig. 3(a) shows the preamble
detection result of four concurrent packets. As shown in
the figure, there are periodic correlation peaks. A gateway
can count the number of correlation peaks above a certain
threshold (i.e., ≥ 4 [33]) to detect the packets and determine
the chirp boundaries. There may exist tiny chirp boundary
offsets in time among multiple packets, which exhibit as
multiple peaks in the FFT bins as shown in Fig. 3(b). In fact,
the correlation operation is robust to small time offsets among
quasi-concurrent packets. The periodic highest peaks indicate
the chirp boundaries of concurrent packets. We address time
and frequency synchronization issue in Section IV-C.

Since multiple nodes transmit packets at the same time
and frequency, there are ensemble of chirps within one chirp
modulation window. To decode the aggregated data, a gateway
first performs de-chirp and FFT operations as it does in the
demodulation of traditional LoRa packets. However, instead
of extracting the exact FFT bin locations of concurrent chirps,
One-shot only needs to count the number of non-base chirps
appearing in each chirp window. To this end, we set a threshold
empirically to separate non-base chirp peaks from noise after
de-chirp and FFT operations. We adjust the threshold accord-
ing to SNR conditions. In the context of data aggregation,
as illustrated in Fig. 1, we obtain the summation of a linear
combination by adding up the multiplication of the number of
‘1’s in a chirp window with the corresponding weight of that
window.

Note that depending on the data type and message length,
nodes use different number of chirps to encode data to
accomplish different target aggregate functions. Each node
can use eight chirps (each encoding 1-bit information) to
encode a byte. A packet can consist of multiple chirps to
encode a different number of bytes in practice. Without loss
of generality, we focus on the transmission and aggregation of
data in binary format.

B. Enhancing Scalability

As introduced in the above subsection, nodes in One-shot
select a non-base chirp to encode bit ‘1’. The number of non-
base chirp candidates for a node is Nbin = N − 1, where
N is the number of different initial frequencies. Since there
are a large number of nodes in a network, two nodes (or
more) may select the same non-base chirp to represent bit
‘1’, resulting in collisions in the same FFT bin and leading
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to wrong aggregation results. Suppose there are R nodes in a
network, the probability Pco−q of q nodes selecting the same
non-base chirp can be modeled as Eq. 2 given that each node
randomly selects one non-base chirp with an equal chance.

Pco−q = (
1

Nbin
)qCq

R (2)

For example, if there are R = 100 nodes in a network, and
the SF is 8 (Nbin = 2SF − 1), the probability of two nodes
selecting the same non-base chirp is Pco−2 = 7.6%. As the
number of nodes increases to 200, Pco−2 becomes 30.6%. If
R is larger than Nbin, it is for sure that two nodes have to
encode ‘1’ with the same non-base chirp.

Intuitively, we can decrease the probability of co-location
collisions by adopting a large SF to increase the number of
available non-base chirps to support more nodes. A wider
bandwidth (BW) is also helpful for increasing the frequency
gap between two adjacent non-base chirps to mitigate the
interference from each other. However, even with the optimal
SF and BW configurations, some nodes may still select the
same non-base chirp.

To avoid such co-location collisions and enhance the scala-
bility, One-shot assigns different initial frequencies to different
nodes. Fig. 4 illustrates the high level idea of frequency
assignment scheme. FFT peaks with different colors represent
bit ‘1’ sent by different nodes. This simple yet effective
method can avoid collisions of chirps in frequency domain
and decrease aggregation estimation error. In practice, One-
shot can pre-configure an initial frequency for each node
when the node joins the network, or dynamically assign
different initial frequencies to nodes by leveraging a collision-
free hash function that maps each node to a distinct initial
frequency. Ideally, One-shot can support a maximum number
of Nnode(max) = 212−1 (SF = 12) nodes in one query if all
nodes are well-synchronized and in good channel conditions.
Since multiple base chirps may appear in the first FFT bin,
the interference to non-base chirps can be strong. To mitigate
the impact on counting non-base chirps, we set 6 guard bins
between the base and non-base chirps.

In case the total number of nodes R is larger than the
maximum available non-base chirps, One-shot splits all nodes
into several batches and queries the nodes batch-by-batch. The
batch index of a node can be pre-configured. It then combines
aggregation estimation results of all batches to derive the final
aggregation result.
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C. Addressing Practical Issues and Our Solutions

The performance of One-shot can be affected by various
practical factors. For example, commodity devices are im-
perfect and real-world wireless channels are subject to noise
and interference, limiting the maximum number of concurrent
transmissions. In the following, we discuss the practical issues
and our solutions to mitigate their impact and optimize the
scalability and accuracy of data aggregation.

Collision of non-base chirps. Ideally, if we assign different
non-base chirps with different initial frequencies to LoRa
nodes, their corresponding peaks should appear in different
FFT bins, i.e., no collision of non-based chirps in theory.
This design requires all devices to transmit different non-
base chirps at the same time with the same carrier frequency
(i.e., synchronization in both time and frequency). In practice,
however, due to a variety of practical factors, it is challenging
to guarantee tight synchronization among a large number of
LoRa nodes in time and frequency.
• Time misalignment. As shown in Fig. 5, suppose there

are two nodes sending packets concurrently. If non-base
chirps transmitted by the two nodes are well-aligned in the
demodulation window (dashed red box), One-shot decoder can
obtain two peaks with correct initial frequencies. In contrast,
if there is a time shift (∆t) between these two chirps (the
demodulation window is misaligned with the second chirp),
the FFT result of the second chirp will shift to a different
FFT bin, i.e., from f2 to f3. Besides, a portion of the adjacent
chirp (the red base chirp, with initial frequency of f0) leaks
into the current demodulation window, causing interference
with chirps from other nodes and decoding errors.

There are two factors that can cause time misalignment.
The first one is response time variance of different nodes. We
measure the response time distribution of 40 LoRa nodes and
observe that the response time varies from 584µs to 592µs
with a standard deviation of 3.47 µs. The maximum response
time difference is 8 µs, which is 1 FFT bin when BW is 125
kHz. That means if nodes immediately respond to a query
message from a gateway, their concurrent transmissions can
be aligned in time. The second impact factor is propagation
delay. Due to the long communication range, the distances
between nodes and a gateway can vary a lot in LoRa networks.
Therefore, two nodes with a considerable distance in between
can not receive the query message at the same time, let alone
synchronize their response messages at the gateway. A 8 µs



time delay corresponds to 1 FFT bin shift (BW = 125 kHz)
and a propagation distance of 2.4 km. For example, the FFT
peak may shift 5 FFT bins from the assigned bin when the
distance between two nodes is 6 km (a round trip of 12 km).

One-shot compensates for the difference in propagation
distance by adding different response delays according to the
distance between LoRa nodes to the gateway. The geographi-
cal locations of nodes and the gateway can be pre-configured
into the devices during node deployment or obtained via
localization services (e.g., GPS, LoRa localization [34, 35]).
As One-shot only needs a km-level localization accuracy
(corresponding to 1 FFT bin), we assume that such localization
services are available for LoRa nodes. In our implementation,
the geo-location of nodes and their corresponding delays are
calculated and hard coded before deployment. In this way,
after receiving a query message from a gateway, nodes located
closer to the gateway will wait for the distant nodes, so that
their concurrent transmissions will be aligned in time.

• Frequency misalignment. Frequency misalignment be-
tween nodes and a gateway results in shift of initial frequency
at the gateway. Such frequency misalignment can cause severe
interference between chirps with similar initial frequencies.
Fig. 6 shows an example. Three nodes are pre-configured
with non-base chirps corresponding to bin 16, 17, and 18,
respectively. Without CFOs between nodes, the peaks of non-
base chirps locate at the correct bins in Fig. 6(a). In contrast,
when there are CFOs among these nodes, the chirps shift to
wrong bins and interfere with each other. For example, the
non-base chirp of node 2 shifts from bin 16 to bin 17 and
interferes with the signal from node 1, causing decoding errors.

LoRa nodes are low-cost devices and may have carrier
frequency offsets (CFOs) among nodes due to hardware im-
perfections (clock drifts and variations). We evaluate the CFOs
among 40 commodity LoRa nodes and plot the result in Fig. 7.
We observe that the carrier frequency varies among different
nodes (± 10 FFT bins) (Fig. 7(a)). The clock of a single node
also drifts (Fig. 7(b)), but remains relatively stable over time
(maximum of ∆FFTbin = 0.3).

Based on this finding, One-shot calibrates each node and
configures the central frequency of each node before data
aggregation. In particular, One-shot estimates the CFO be-
tween each node and the gateway by examining the multi-
plication result of SFD down-chirp and base up-chirp from
the same packet as in the literature [27, 36, 37]. Then, One-
shot compensates for the frequency offset by adding the
estimated CFO to the central frequency of each node. The
CFO estimation and calibration can be performed regularly
after routine message exchanges between each node and the
gateway (e.g., beacon, ACK) before the data aggregation oper-
ation. The nodes with excessively large CFOs can be identified
and calibrated immediately by examining the spectrum of
concurrent transmissions, where the chirps with large CFOs
(± 10 FFT bins) will substantially deviate from the correct
central frequency.

To further mitigate the impact of time and frequency
misalignment, One-shot sets guard bins between the selected

8 12 16 20 24

FFT Bin #

1  

20 

40 

60 

80 

100

120

A
b

s
. 

F
F

T

Node 1

Node 2

Node 3

#18
#16

#17

(a)

8 12 16 20 24

FFT Bin #

1  

20 

40 

60 

80 

100

120

A
b

s
. 

F
F

T

Node 1

Node 2

Node 3

#16-->17

#17

#18-->16

(b)
Fig. 6. (a) Non-base chirps without CFOs located at bin 16, 17, and 18,
separately. (b) Non-base chirps with CFOs shift to wrong bins and cause
collisions.

-10 -5 0  5  10 

 FFT Bin

0  

0.2

0.4

0.6

0.8

1  

C
D

F

(a)

0   0.05 0.1 0.15 0.2 0.25 0.3 

 FFT Bin

0  

0.2

0.4

0.6

0.8

1  

C
D

F

(b)
Fig. 7. (a) CFO distribution of 40 nodes (where ∆ FFT Bin is the normalized
CFOs to bins as BW=250 kHz and SF=8). (b) Frequency-drift distribution of
one single node.

frequency bins to tolerate potential time and frequency shifts
and interference. Specifically, we choose non-base chirps
corresponding to every M bin as candidate bit ‘1’, where M
is the number of empty bins between two available non-base
chirps. One-shot can adopt a larger M to mitigate the inter-
packet interference and improve the robustness of decoding in
bad channel conditions. Yet, a larger M lowers the scalability
of data aggregation. In practice, One-shot needs to strike a
balance between scalability and robustness by tuning M. We
conduct an experiment in Section V-B2 to evaluate the impact
of M. In addition, One-shot zero-pads the received signals to
get a fine-grained location estimation of peaks to facilitate
counting of non-base chirps.

Near-far problem. As concurrent nodes concentrate their
transmission power in their assigned FFT bins, we expect
strong robustness against background noise and interference.
Yet, in practice, we notice that the signal strength from a
nearby node can be much stronger than that from a remote
node. As shown in Fig. 8(a), overshadowed by a high peak,
an adjacent weak peak can be easily missed, leading to an
inaccurate aggregate estimate. The problem becomes severer
in a typical below-the-noise-floor condition over a long range
communication in LoRa networks.

To address this problem, we assign neighboring FFT bins to
nodes with similar SNR levels. Fig. 8(b) illustrates intuition of
this idea. Chirps from high-SNR nodes are grouped together
while chirps from low-SNR nodes are assigned with FFT bins
far away from the high-SNR nodes. One-shot pre-configures a
non-base chirp for each node when a node joins the network.
A gateway determines the initial frequency of a non-base chirp
according to the received signal power of the join request and
the signal power of existing nodes in the network. In this
way, nodes with asymmetric SNRs are separated into different
ranges of FFT bins. Lower SNR devices will be assigned to
FFT bins far from those of higher SNR devices. The side
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lobe of a strong peak will not interfere with the main lobe
of a weak peak far from it, as the side lobe’s power becomes
weaker when it becomes farther from the main lobe. This non-
base chirp assignment method facilitates weak peak detection.

Power adaptation. One-shot adopts power adaption to
reduce the power consumption of LoRa nodes and account
for channel variations in the process of data aggregation.
Intuitively, a nearby node can use lower transmission power
to save energy. In contrast, a remote node has to send a
packet with adequate power to ensure correct reception and
decoding at the gateway. Besides, a node needs to adjust its
transmission power in case of channel variations to guarantee
a good performance of data aggregation estimation.

We leverage the channel reciprocity between a node and a
gateway to adjust the transmission power. In particular, a node
changes its transmission power according to the query packet
received from a gateway. Intuitively, if the signal strength of
the query packet is high, according to the channel reciprocity, a
node can conservatively reduce its transmission power to save
some energy without affecting communication performance. In
data aggregation process, a node self-adjusts its transmission
power according to the power of the received query message.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement a prototype system of One-shot with Soft-
ware Defined Radio (SDR) devices (i.e., USRP N210s with
WBX daughterboards). We use USRPs as end nodes to send
encoded One-shot packets at different locations. Limited by
the number of available USRPs, we use each USRP to emulate
the concurrent responses of multiple nodes by sending multiple
One-shot packets encoding different sensor data.

We use another USRP as a One-shot gateway. The gateway
broadcasts query messages to end nodes and receives the
concurrent response packets from end nodes. The received
signals of concurrent responses are first sent to a workstation
and then processed in MATLAB to decode aggregation results.

B. Evaluation

1) Methodology: Experiment setup. We collect data traces
with real channel measurements from USRPs. The USRPs
are set with a slightly different central frequency to emulate
the hardware imperfections of COTS LoRa nodes. The total
number of traces is over 4000. We add additive white Gaussian

noise at the gateway to evaluate the system performance under
different channel conditions. For each set of evaluation, we
repeat the experiment 50 times and report the average result.
We set the payload length of the response message to 50 chirps
and the preamble length to 6 chirps. As such, One-shot nodes
transmit 50 bits per packet since one chirp can encode one bit.
Unless specified otherwise, we configure the default central
frequency, spreading factor, and bandwidth of the signal to
915 MHz, 8, and 250 kHz, respectively.

Evaluation metrics. For simplicity, we take the calculation
of the sum of sensing data as an example to illustrate the
performance of One-shot. In real-world applications, users
can measure the performance of One-shot in other aggregate
functions (count, mean, and spatial distribution, etc.). We
evaluate the overall performance of One-shot with two key
metrics:

Aggregation error. We define this metric as the deviation
of estimated sum compared to the ground truth of the sum
of sensing data in one query. Here n is the total number of
queried nodes in one query.

Error =
|Agg.est. −

∑n
i=1 di|∑n

i=1 di

Goodput. The goodput of one query is the amount of
sensing data in bits that is successfully received by the gateway
per second. This metric can be used to evaluate the data
aggregation efficiency.

Benchmark. We compare One-shot with the state-of-the-
art method QuAiL, sequential query, and two concurrent
transmission methods, i.e., FTrack and Choir.

2) Performance: Robustness and accuracy. We first eval-
uate One-shot’s accuracy in retrieving an aggregation result
that calculates the sum of data from all nodes. We compare
One-shot with QuAiL under three SNR conditions (i.e., −10
dB, 0 dB, 10 dB). We repeat each experiment for 50 times.
If all data bits are correctly received, we mark the error as
≤ 10−3 in the figures. In the experiments, we control the
number of nodes participating in data aggregation. A smaller
number of queried nodes in one query can mitigate inter-node
interference and improve aggregation accuracy, but at the cost
of longer data collection time.

The results in different SNR conditions are shown in
Fig. 9(a-c). We see that the overall errors of One-shot are
much lower than QuAiL in all three SNR conditions when
the number of concurrent responses is smaller than 60. As
the SNR becomes higher, the accuracy of both One-shot
and QuAiL improve. For instance, One-shot yields acceptable
aggregate accuracy (i.e., error < 10%) when SNR is −10
dB. As SNR increases to 0 dB, the error further decreases. In
comparison, the aggregate errors of QuAiL remain consistently
higher than 10%. This experiment demonstrates that One-shot
is more accurate and robust than QuAiL.

Aggregation efficiency (Goodput). In this experiment, we
compare the aggregation efficiency of One-shot in terms of
goodput against QuAiL and sequential queries in different
settings. For QuAiL, each node can encode at most 8 bits
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Fig. 9. Aggregation error under different SNR conditions.
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Fig. 10. Goodput comparison of One-shot and QuAiL under different SNR conditions.

per packet by varying transmission power levels of a packet.
For sequential queries, we report the maximum goodput of a
standard LoRa node as its goodput.

Fig. 10(a-c) present the results of goodput in three SNR
conditions. As expected, One-shot produces higher goodput
than QuAiL and sequential query. One-shot achieves nearly
10 × improvement in goodput compared with QuAiL even
when the SNR is −10 dB. The gain mainly comes from using
CSS chirps to encode data since the chirps can concentrate
the energy and deliver data with high robustness. In contrast,
QuAiL heavily relies on linear combinations of power from
multiple nodes, which can be adversely influenced by noise
and interference in real-world deployment. We see slight
improvement of goodput for QuAiL as the number of queried
nodes increases. That is because as more nodes transmit
together, the impact of power difference among nodes becomes
less prominent. Yet, the overall aggregate power measurement
is still susceptible to background noise and interference.

We can also observe from Fig. 10(a-c) that the goodput
of three schemes improve as SNR becomes higher. The
goodput of One-shot increases with the number of concurrent
responses. The number reaches 49.84 kbps and 50.2 kbps
when the SNRs are 0 dB and 10 dB, respectively. One-shot
yields the highest goodput when 60 nodes participate in a
query concurrently. As the number of nodes further increases,
the goodput of One-shot starts to decrease because of inter-
node interference. To ensure reliable data aggregation, we can
estimate the number of nodes in a network and coordinate
the nodes accordingly. For example, we may assign nodes to
different batches each consisting of 40-60 nodes and aggregate
data batch-by-batch.

Impact of different bandwidths. In this experiment, we
fix SF to 8 and vary the bandwidth of LoRa chirps to evaluate
the impacts of bandwidth on data aggregation. Specifically,
we evaluate One-shot with BW=125 kHz, 250 kHz, and 500
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kHz, respectively. We set SNR to 0 dB and measure goodput
of One-shot with different number of concurrent nodes.

We can observe from Fig. 11 that wider bandwidth gen-
erally produces higher goodput. For instance, the goodput is
80.56 kbps when 50 nodes transmit simultaneously when the
bandwidth is 500 kHz. It is about twice of the goodput of
bandwidth 250 kHz (40.52 kbps) and four times that of 125
kHz (19.77 kbps). The results are reasonable since a packet in
wide bandwidth has a short transmission time (i.e., high PHY
bit rate).

Impact of different spreading factors. In this experiment,
we fix the bandwidth and vary the Spreading Factor (SF) of
LoRa chirps. For demonstration, we set the SF of LoRa chirps
to 7, 8, and 9. In this experiment, the BW is 250 kHz and the
SNR is 0 dB. Other experiment configurations are the same
as in the above experiment.

Fig. 12 shows the results. The goodput of One-shot de-
creases as the SF increases. The goodput of SF = 7 (75.45
kbps) with 50 concurrent nodes is about twice the goodput
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of SF = 8 (40.52 kbps) and four times that of SF = 9
(20.26 kbps). The reason is that chirps with a high SF would
have a long chirp duration, which increases packet air-time
and reduces the overall goodput.

Impact of the number of guard bins (M). In this experi-
ment, we evaluate the error rate of non-base chirp detection in
each payload window under different settings of guard bins.
We vary the number of guard bins from 1 to 10 at a step of
1 FFT bin. We calculate the ratio of windows with incorrect
chirp detection to the total number of payload windows as
error rate of non-base chirp detection.

We present the results in Fig. 13. As expected, a large M
brings low error rates for chirp detection under the same SNR
conditions. The error rate becomes lower as SNR increases.
It means that a large M is required for low SNRs in order
to achieve good performance on chirp detection. For example,
when SNR is −10 dB, 8 guard bins are required to achieve
zero error rate of chirp detection. In contrast, only 3∼4
guard bins are needed when SNR≥0 dB. One-shot can choose
different M to adapt to different SNR scenarios.

VI. RELATED WORK

There has been much past work [38] on data aggregation in
wireless sensor networks (WSNs). In WSNs, various method-
ologies, such as the tree-based approach [39] and the cluster-
based approach [40], are used to collect and combine sensor
data in a region of interest. Since LoRa nodes communicate
with a gateway through one-hop uplinks, complex routing
protocols for data aggregation in WSNs are not suitable for
LoRaWAN. Our work is most related to data aggregation
methods for LoRa networks. In QuAiL [21], all nodes encode
their data with signal power and transmit together. Then,
QuAiL measures the aggregated signal power of colliding
packets at a gateway and estimate the aggregate result with
the aggregated signal power. Compared with the sequential
query method, QuAiL can substantially reduce the overall data
transmission time by supporting concurrent transmissions of
LoRa nodes. In practice, however, the measured signal power
is subject to background noise and interference in the wireless
channel. As a result, the estimate result can be far from the
ground truth. Same as QuAiL, our work One-shot coordinates
LoRa nodes to send packets concurrently and estimate an
aggregate result from the colliding signals. The key novelty
of One-shot is that unlike QuAiL which encodes data with
signal power, One-shot encodes data with non-base chirps.
As such, One-shot effectively inherits the robustness of CSS
modulation against noise and interference.

Concurrent transmission methods aim to resolve packet
collisions and decode concurrent packets from multiple LoRa

nodes [41, 42]. For example, Choir [25] measures the fre-
quency offsets of chirps and resolves LoRa packet collisions.
FTrack [26] leverages the misalignment of LoRa chirps to
disentangle collided packets in the time domain. mLoRa [43]
detects the time offset between concurrent packets based on
preamble correlation results. CoLoRa [44] classifies LoRa
symbols to their corresponding LoRa packets according to the
power level of the same frequency in different demodulation
windows. NScale [29] amplifies the time offsets between col-
liding packets with a novel non-stationary signal scaling strat-
egy. CIC [28] examines the sub-symbol time domain features
to cancel out interference symbols from a targeted symbol.
PCube [27] resolves collisions in phase domain by leveraging
multiple antennas at a gateway. NetScatter [45] aims to support
concurrent transmissions of backscatter devices which send
messages by backscattering LoRa signals. Similar to our work,
NetScatter essentially encodes backscatter information with
one-hot coding. Yet, it does not address unique practical
challenges of the data aggregation in LoRa networks such
as time and frequency misalignment among LoRa nodes.
Unlike those works, One-shot encourages collisions to increase
scalability and achieve higher aggregate data rate. To this end,
One-shot designs a novel coding scheme for data aggregation,
and addresses a series of practical challenges such as time and
frequency misalignment among LoRa nodes.

In LoRa MAC layer, LMAC [46] supports carrier sensing
for LoRa nodes with channel activity detection. S-MAC [47]
models the channel access of LoRa networks as a channel
scheduling problem. Unlike those works, One-shot coordinates
multiple nodes to access the channel simultaneously and send
coded packets concurrently.

VII. CONCLUSION

This paper presents a quick and accurate data aggregation
method for LoRa networks. One-shot proposes a novel phys-
ical layer data encoding and decoding method to support a
large number of LoRa nodes to send data concurrently. One-
shot addresses technical challenges such as time and frequency
misalignment among concurrent transmissions so that the ag-
gregate data can be estimated efficiently and accurately. Exper-
iment results show that One-shot can substantially outperform
the state-of-the-art data aggregation method in terms of data
collection efficiency as well as estimation accuracy. We believe
many innovative applications can be supported by One-shot
such as data collection over large areas, network management
and maintenance, and in-field sensor data analytic.
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